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A B S T R A C T 

Numerical radiation-hydrodynamics (RHD) for non-relativistic flows is a challenging problem because it encompasses processes 
acting o v er a v ery broad range of time-scales, and where the relative importance of these processes often varies by orders of 
magnitude across the computational domain. Here, we present a new implicit–explicit method for numerical RHD that has a 
number of desirable properties that have not previously been combined in a single method. Our scheme is based on moments 
and allows machine-precision conservation of energy and momentum, making it highly suitable for adaptive mesh refinement 
applications; it requires no more communication than hydrodynamics and includes no non-local iterative steps, making it highly 

suitable for massively parallel and Graphics Processing Unit (GPU)-based systems where communication is a bottleneck; and 

we show that it is asymptotically accurate in the streaming, static diffusion, and dynamic diffusion limits, including in the 
so-called asymptotic diffusion regime where the computational grid does not resolve the photon mean-free path. We implement 
our method in the GPU-accelerated RHD code QUOKKA and show that it passes a wide range of numerical tests. 

K ey words: dif fusion – hydrodynamics – radiation: dynamics – methods: numerical. 
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 I N T RO D U C T I O N  

adiation-hydrodynamics (RHD) plays a significant role in astro-
hysics, influencing the evolution and energy distribution in various
strophysical systems or phenomena – stellar atmospheres (e.g. Mi-
alas 1978 ), planetary atmospheres (e.g. Zhang 2020 ), core-collapse
upernov ae (e.g. Skinner, Burro ws & Dolence 2016 ; Radice et al.
018 ), star formation in a variety of environments (e.g. Thompson,
uataert & Murray 2005 ; Krumholz et al. 2009 ; Rosen et al. 2016 ;
e, Ricotti & Geen 2019 ; Menon, Federrath & Krumholz 2023 ),

ctive galactic nuclei and jets (e.g. Davis & Tchekhovsk o y 2020 ),
nd galactic outflows (e.g. Naab & Ostriker 2017 ; Zhang 2020 ). The
ynamics of RHD systems vary substantially in a range of scales and
hysical conditions, parametrized by the typical optical depth and
he sound speed of radiation-interacting gas, which determines how
adiation is transported. While several numerical techniques exist to
olve the RHD equations in v arious limits, de veloping methods that
re accurate across all regimes and that run efficiently on modern,
PU-based architectures remains an ongoing challenge. 
There are well-known difficulties associated with solving the RHD

quations numerically for non-relativistic systems. One significant
hallenge arises from the huge difference in time-scales associated
ith radiation and hydrodynamics – characterized by the speed of

ight c and gas flow speed v, respectively. A second is that realistic
HD problems often contain a huge range of opacities, such that the
 E-mail: chongchong.he@anu.edu.au 
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hoton mean-free path may be comparable to the size of the entire
imulation domain in some regions, while in others it may be so
mall as to be impossible to resolve at reasonable computational
ost. The RHD equations are well-suited to hydrodynamics-like
xplicit solution methods in some regimes, but often the source terms
oupling the gas and radiation are so stiff that an implicit method
ust be used to ensure stability. 
To deal with these challenges, it is natural to solve both the

ransport and source terms in the radiative transfer (RT) equations im-
licitly so that the time-step is not limited by the speed of light. This
s the approach adopted by many RHD codes (e.g. Krumholz et al.
007 ; Zhang et al. 2011 ; Jiang, Stone & Davis 2012 ; Menon et al.
022 ). Ho we ver, this approach suf fers from the need for an implicit
reatment of the transport term, which is non-local. In multiple
imensions, implicit update of this term is usually accomplished
y solving a sparse matrix system, and sparse matrix solvers show
imited scalability and performance on modern massively parallel
nd GPU-accelerated architectures, where the high and unpredictable
ommunication load they involve becomes a performance bottleneck.

Several authors have explored alternative approaches in which
he transport and source terms are operator-split, with the former
reated explicitly and the latter implicitly (e.g. Jiang, Stone & Davis
014 ; Rosdahl & Teyssier 2015 ; Skinner et al. 2019 ; Wibking &
rumholz 2022 ). These schemes generally achieve better scaling

nd speed, particularly when running in parallel on large numbers of
PUs. One of the disadvantages of this approach is that the explicit

reatment of the transport term requires a time-step significantly
maller than the hydrodynamics one (since c � v), but it is possible
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1 While in this paper we focus on RHD for simplicity, our method applies 
equally well to radiation-magnetohydroynamic systems and equations. 
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o alleviate this problem by subcycling the radiation transport step 
elative to hydrodynamics. Since the transport equations for radiation 
re much simpler than those for hydrodynamics, it is possible to carry
ut many radiation transport updates per hydrodynamic update at a 
omparable cost. If necessary the cost can be mitigated further using
he reduced speed of light approximation (RSLA; Gnedin & Abel 
001 ; Skinner & Ostriker 2013 ). 
A second challenge in the operator-split approach has received less 

ttention in the literature, but is perhaps even more serious: the need to
roperly balance the transport and source terms across all asymptotic 
egimes. This balance is critical because the RT equation behaves 
s an advection equation in optically thin regimes, but transitions 
o a diffusion equation in optically thick regimes, and near-perfect 
ancellations between parts of the source and transport terms are 
esponsible for this behaviour. Efforts to reco v er this property of
he RHD system have thus far mostly involved ad hoc corrections 
o the Riemann solver or to the source terms to reco v er the correct
symptotic limit. For instance, Rosdahl & Teyssier ( 2015 ) add a
trapped photons’ term to the source term to account for diffusion.
kinner et al. ( 2019 ) apply corrections to the wave speed in the
iemann solver, scaling down the characteristic speed of the radiation 
odes in optically thick regimes by a factor of 1 / 

√ 

Nτcell , where τ cell 

s the optical depth per cell, and N , chosen empirically, is a small
nteger. A similar approach is used by Wibking & Krumholz ( 2022 ),
ereafter Paper I . Despite these efforts, such corrections are often 
nly partly successful, and their accuracy across a wide range of
arameter space has not been tested. Perhaps the most successful 
in terms of accuracy) operator-split method published to date is 
he discontinuous Galerkin implicit–explicit (DG-IMEX) scheme 
roposed by McClarren et al. ( 2008 ), but as we discuss below even
his scheme is not accurate in all RHD limits, and it has a number of
ther undesirable properties as well. 
This situation moti v ates our goal of designing a method that

chieves the best of both worlds: accuracy in all RHD regimes 
hat is comparable to that achieved by fully implicit methods, 
ut without the need for poorly scaling communication-intensive 
perations like sparse matrix solves. In this paper, we describe a 
ethod that achieves this goal using a novel time-integration scheme 

hat reco v ers the proper asymptotic limit in the radiation diffusion
egime without requiring non-local implicit updates. Our method is 
ased on a conv e x-invariant, asymptotic-preserving IMEX approach 
hat is second-order accurate in streaming limit, wherein the transport 
erms are handled explicitly, while the matter-radiation interacting 
art is treated implicitly and locally , eliminating the need for non-
ocal implicit terms in iteration. 

We begin in Section 2 by introducing the full set of two-moment
HD equations to be solved and deriving characteristic numbers 
nd limiting behaviours for them, laying the foundation for our 
nalysis. Then, in Section 3 , we present the IMEX scheme. In
ection 4 , we derive some properties of our scheme and compare to
lternative approaches. Finally, we present in Section 5 tests of our 
mplementation, demonstrating its ef fecti veness and applicability. 

 T H E  R H D  E QUAT I O N S  A N D  N U M E R I C A L  

E T H O D S  F O R  SOLV ING  THEM  

e begin our analysis by describing the RHD system of equations in
ection 2.1 , non-dimensionalizing it to obtain characteristic numbers 
nd limiting regimes in Section 2.2 , and then using those to gain
nsight into the challenges of designing numerical methods for RHD 

nd to moti v ate our approach in Section 2.3 . 
.1 The RHD system 

ur method begins from the fundamental equations of RHD 

1 

xpressed in an inertial (lab) reference frame. These are 

∂ U 

∂ t 
+ ∇ · F U = S U , (1) 

here 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρ

ρv 

E gas 

E 

1 
c 2 

F 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, F U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

ρv ⊗ v + p 

( E gas + p) v 

F 

P 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, S U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

G 

cG 0 

−cG 0 

−G 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (2) 

re vectors of the conserved quantities, the advection terms, and the
ource terms, respectively; in the equations above, ρ is the matter 
ensity, v is the matter velocity, p is the matter pressure, E gas is the
as total energy density, E is the radiation energy density, F is the
adiation flux, P is the radiation pressure tensor, and ( cG 0 , G ) is the
adiation four-force. A significant advantage of working with lab- 
rame rather than comoving-frame radiation quantities is that these 
quations are manifestly conserv ati ve, a feature that the algorithm we
escribe below will preserve. As usual in the moment formulation, 
o we ver, one must adopt a closure relation for the radiation pressure
ensor P . There are a wide range of possible closures, and since our
cheme is independent of this choice, we will not discuss closure
elations further here. 

Our next step is to write out the radiation four-force in the mixed-
rame formulation, whereby we write the matter–radiation exchange 
oefficients in the comoving frame, where they are simplest, while all
ther quantities remain in the lab frame. We assume that the emitting
atter is in local thermodynamic equilibrium, so its emissivity is 

roportional to the Planck function, and we neglect scattering. To 
rder v 2 / c 2 the result, expressed in index notation and adopting the
instein summation convention, is (Krumholz et al. 2007 ) 

− cG 0 = c 

(
χ0 P 

4 πB 

c 
− χ0 E E 

)(
1 + 

1 

2 

v 2 

c 2 

)

+ (2 χ0 E − χ0 F ) 

(
v i F i 

c 

)

+ c( χ0 F − χ0 E ) 

(
v 2 

c 2 
E + 

v i v j P ij 

c 2 

)
, (3) 

− G i = −χ0 F 
F i 

c 

(
1 + 

1 

2 

v 2 

c 2 

)
+ χ0 P 

4 πB 

c 

v i 

c 
+ χ0 F 

v j P ji 

c 

+ ( χ0 F − χ0 E ) 

(
E − 2 v j F j 

c 2 

)
v i 

c 
. (4) 

ere, a subscript 0 in χ indicates the absorption coefficient is 
xpressed in the comoving rather than the lab frame, and χ0 P ,
0 E , and χ0 F are the comoving-frame Planck, energy, and flux 
ean absorption coefficients. The leading-order part of the time- 

ike component of the mixed-frame radiation four-force G 0 is the 
lassical rate of radiation–matter energy exchange in the comoving 
rame, while the order v/ c part combines the work done by the
adiation force on matter ( −χ0 F v i F i / c ) with a purely relativistic
ffect arising from the transformation of the opacity between the 
omoving and lab frames (2 χ0 E v i F i / c ); the second-order terms are
MNRAS 531, 1228–1242 (2024) 
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imilarly relativistic effects arising from the frame transformation. In
he space-like component G i , the leading-order term is the radiation
orce in the comoving frame, while the remaining order v/ c and
 

2 / c 2 terms describe relativistic effects that can be interpreted as
rame-dragging between matter and radiation. Note that it is also
ossible to e v aluate ( cG 

0 , G ) using the exact Lorentz transformation
hat is accurate to all orders of v/ c (Mihalas & Auer 2001 ), and
ome authors take this approach (Jiang, Stone & Davis 2019 ; Chang,
avis & Jiang 2020 ). Our implementation allows users to choose
hich approach – order v/ c , order v 2 / c 2 , or exact – to use, but unless

tated otherwise in what follows we use order v 2 / c 2 accuracy. In non-
elativistic problems using frequenc y-inte grated radiativ e transfer
his choice makes little difference, and in forthcoming work we show
hat retaining only the v/ c terms offers a significant computational
dvantage in multigroup problems (He, Wibking & Krumholz, in
reparation). 

.2 Characteristic numbers and limiting regimes 

e next derive characteristic dimensionless numbers for RHD
ystems and consider the limiting behaviour of various terms as
e alter their relative sizes. We non-dimensionalize equation ( 1 ) and

quation ( 2 ) following Lowrie, Morel & Hittinger ( 1999 ). For the
atter quantities, we let � be the characteristic size of the system,
 ∞ 

be the characteristic isothermal sound speed, and ρ∞ 

be the
haracteristic density, and define 

ˆ  i = x i /�, ˆ t = t/ ( �/a ∞ 

) , ˆ ρ = ρ/ρ∞ 

, ˆ v i = v i /a ∞ 

, (5) 

ˆ  = p/ ( ρ∞ 

a 2 ∞ 

) , ˆ T = T /T ∞ 

, ˆ E gas = E gas / ( ρ∞ 

a 2 ∞ 

) , (6) 

ere, the quantities with carets are dimensionless versions of the
imensional quantities. For the radiation quantities, we let T ∞ 

be the
eference temperature and λ∞ 

be the reference length scale 2 , and we
efine 

ˆ 
 = E/ ( a r T 

4 
∞ 

) , ˆ F = F / ( ca r T 
4 
∞ 

) , ˆ P ij = P ij / ( a r T 
4 
∞ 

) (7) 

ˆ 0 = χ0 λ∞ 

, 4 π ˆ B = 4 πB/ ( ca r T 
4 
∞ 

) = 

ˆ T 4 , (8) 

ith these definitions, the radiation four-force becomes 

− cG 0 = 

ca r T 
4 
∞ 

λ∞ 

[(
ˆ χ0 P ˆ T 4 − ˆ χ0 E ˆ E 

)(
1 + 

1 

2 

ˆ v 2 

C 

2 

)

+ ( 2 ̂  χ0 E − ˆ χ0 F ) 
ˆ v i ˆ F i 

C 

+ ( ˆ χ0 F − ˆ χ0 E ) 
ˆ v 2 ˆ E + ˆ v i ̂  v j ˆ P ij 

C 

2 

] 

(9) 

≡ ca r T 
4 
∞ 

λ∞ 

( − ˆ G 0 ) (10) 

− G i = 

a r T 
4 
∞ 

λ∞ 

[
− ˆ χ0 F ˆ F i 

(
1 + 

1 

2 

ˆ v 2 

C 

2 

)
+ 

(
ˆ χ0 P ˆ T 4 − ˆ χ0 E ˆ E 

) ˆ v i 
C 

+ 

ˆ χ0 F 

C 

(
ˆ v j ˆ P ji + ˆ v i ˆ E 

) − 2 

C 

2 
( ˆ χ0 F − ˆ χ0 E ) ˆ v j ˆ F j ̂  v i 

]
(11) 

≡ a r T 
4 
∞ 

λ
( − ˆ G i ) , (12) 
NRAS 531, 1228–1242 (2024) 

∞ 

 Note that we do not set the reference length scale for radiation quantities to 
 because we wish to ensure that ˆ χ0 is a quantity of order unity, and � and 

∞ 

may need to be very different in order to accomplish this. 

E

w  

c  

e  
nd the corresponding non-dimensionalized version of equation ( 1 )
s 

∂ 

∂ ̂ t 
ˆ U + 

ˆ ∇ · ˆ F ˆ U = 

ˆ S ˆ U , (13) 

here ˆ ∇ ≡ � ∇ and 

ˆ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ ρ

ˆ ρ ˆ v 

ˆ E gas 

ˆ E 

ˆ F 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, ˆ F ˆ U = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ ρ ˆ v 

ˆ ρ
(

ˆ v ⊗ ˆ v + 

ˆ T 
)

(
ˆ E gas + ˆ p 

)
ˆ v 

C ̂

 F 

C ̂

 P 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, ˆ S ˆ U = L 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

P 

ˆ G 

P C 

ˆ G 0 

−C 

ˆ G 0 

−C ̂

 G 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(14) 

n these expressions, we have introduced three dimensionless quan-
ities: 

 = 

c 

a ∞ 

, L = 

� 

λ∞ 

, P = 

a r T 
4 
∞ 

ρ∞ 

a 2 ∞ 

. (15) 

hese numbers represent, respectively, the dimensionless speed of
ight, the ratio of the system size to the photon mean-free path (and
hus is equal to the characteristic optical depth), and (up to factors
f order unity) the ratio of radiation pressure to gas pressure at
he characteristic temperature and sound speed of the system. It is
herefore clear that an RHD system is determined by these three
haracteristic numbers; the first is al w ays much greater than unity
or a non-relativistic system, but the remaining two can be of any
ize. 

Now let us consider various limiting cases of the dimensionless
umbers, focusing in particular on the evolution equations for the
adiation quantities ˆ E and ˆ F (the last two entries in equation 13 );
his will simplify our task since P does not appear in these equations.
or numerical convenience, and since our goal here is insight rather

han rigorous calculation, we will also at this point specialize to the
ase of grey material, which allows us to choose our scaling λ∞ 

uch that ˆ χ0 P = ˆ χ0 E = ˆ χ0 F = 1. In this case the non-dimensional
adiation four-force reduces to 

− ˆ G 0 = 

(
ˆ T 4 − ˆ E 

)(
1 + 

1 

2 

ˆ v 2 

C 

2 

)
+ 

ˆ v i ˆ F i 

C 

(16) 

− ˆ G i = − ˆ F i 

(
1 + 

1 

2 

ˆ v 2 

C 

2 

)
+ 

ˆ T 4 ˆ v i + 

ˆ v j ˆ P ji 

C 

. (17) 

For L � 1, the system is optically thin and we are in the streaming
egime. In this case it is clear that the largest term is ˆ ∇ · ˆ F ˆ U , and
o on a fluid flow time-scale it is clear that the solution is simply
ˆ 
 · ˆ F = 0 and ˆ ∇ · ˆ P = 0 . On the other hand, for L � 1, we are in

he diffusion limit, and it is clear that ˆ S ˆ U , which is of order CL , is the
argest term, and therefore on a fluid flow time-scale to leading order
e must have ( ̂  G 0 , ˆ G ) = (0 , 0 ). This in turn requires that, to leading
rder, ˆ E = 

ˆ T 4 and ˆ F = 0 ; though we have not shown it here, it is
traightforward to show that in this limit we also have ˆ P = (1 / 3) I ̂  E ,
here I is the identity tensor (Mihalas & Mihalas 1984 ). Since the
ux is zero to the leading order in this case, we must proceed to the
ext order to determine its value. To do so, we Taylor expand the
adiation energy density, flux, and pressure tensor about the leading
rder solution: 

ˆ 
 = 

ˆ T 4 + 

ˆ E (1) ˆ F = 

ˆ F (1) ˆ P = 

1 

3 
I ̂  T 4 + 

ˆ P (1) , (18) 

here terms subscripted (1) are perturbations that we take to be small
ompared to the leading-order terms. We insert these expressions into
quation ( 13 ), Taylor expand, and linearize by dropping all terms that
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nvolve products of perturbed quantities. Which terms are at leading 
rder after this procedure depends on the relative values of C and L .
f C � L , known as the static diffusion limit, then the leading order
urviving terms in the equation for the flux are 

∂ 

∂ t 
ˆ F (1) + 

1 

3 
C ̂

 ∇ 

ˆ T 4 = −CL ̂

 F (1) . (19) 

ince both C and CL are large compared to unity, on a fluid flow
ime-scale the terms proportional to these factors must cancel, and 
herefore we have 

ˆ F (1) = − 1 

3 L 

ˆ ∇ 

ˆ T 4 . (20) 

his is the usual Fick’s Law diffusion approximation. Armed with 
his leading order result, we can see that the relative sizes of the terms
n the radiation evolution equations ( ∂ / ∂ ̂ t )( ̂  E , ˆ F ) : C ̂

 ∇ · ( ̂  F , ̂  P ) :
L ( ̂  G 0 , ˆ G ) scale relative to one another as 1 : C/L : C/L . 
On the other hand, if we have C � L , known as the dynamic

iffusion case, then the leading non-zero terms are 

∂ 

∂ t 
ˆ F (1) = −CL ̂  χ0 ̂  F (1) + 

4 

3 
L ̂

 T 4 ˆ v . (21) 

s in the previous case, since C and CL are large compared to unity,
n a fluid flow time-scale the two terms on the right-hand side must
ancel to leading order, and we instead have 

F (1) = 

4 

3 C 

ˆ v ̂  T 4 . (22) 

n this case the relative scalings of the terms in the radiation evolution
quations ( ∂ / ∂ ̂ t )( ̂  E , ˆ F ) : C ̂

 ∇ · ( ̂  F , ̂  P ) : CL ( ̂  G 0 , ˆ G ) are 1: 1: 1, i.e.
ll terms are of equal order. 

.3 Design considerations for numerical methods 

hile the exploration of the limiting cases here is not new (e.g.
ihalas & Mihalas 1984 ; Lowrie et al. 1999 ; Krumholz et al. 2007 ),

e visiting it allo ws us to make some important observations about
esign considerations for numerical methods. First, which terms are 
arge on a fluid flow time-scale, and relative to each other, changes
rom one RHD regime to another – in the streaming limit the transport
erms proportional to C dominate, in the static diffusion regime 
hese terms come into balance with the source terms and both are
t order C/L � 1, while in the dynamic diffusion regime all terms,
ncluding the time deri v ati ve, become of order unity. Therefore if an
HD scheme is to correctly capture the limiting behaviour in each 
f these regimes, it cannot rely on any particular assumptions about 
he relative orderings of these terms, and must be able to cope with
ituations where each of them is both dominant and subdominant. 

A second consideration, which we have already introduced in 
ection 1 , is that in the diffusion regime obtaining the correct solution
epends on the dominant terms cancelling to high-order. That is, we 
ave seen that the source terms are naturally of size CL , but in static
iffusion the leading order terms cancel and so the dominant non- 
anishing term is smaller by a factor L 

2 � 1, while for dynamic
iffusion it is smaller by a factor CL � 1. Similarly, the natural
izes of the transport terms are C, but this is reduced by a factor L in
tatic diffusion, and by a factor C in dynamic diffusion. This creates
roblems for schemes where the transport and source terms, or parts
f the source terms, are operator-split, because in an operator split
cheme it is difficult to reco v er the proper near-exact cancellations
etween the various terms. Overcoming this problem will be our 
rimary objective. 
Before describing our proposed solution, ho we ver, we pause to 

iscuss another possible approach that is somewhat close to ours in 
pirit: the DG-IMEX method of McClarren et al. ( 2008 ). This method
ses a temporal discretization that accurately captures cancellations 
n the static diffusion limit while a v oiding non-local implicit solves,
nd McClarren et al. show that it passes a number of tests that
ther operator-split methods fail. Ho we ver, the price for this is
igh: the method requires a careful and complex reconstruction 
cheme that is heavy in terms of both computation and memory
sage – indeed, the method requires eight degrees of freedom per 
ell, and therefore requires eight times as much memory as the
nite volume scheme we present below, a major problem for GPU-
ased computations where memory is at a premium. Additionally, 
n the full radiation-hydrodynamics context (not considered by 

cClarren et al.), coupling a DG radiation solver to a finite volume
ydrodynamics code requires careful consideration of how the fluid 
nternal energy is mapped from the finite volume grid to the DG
odes in order to maintain the asymptotic-preserving property. While 
xisting methods for this mapping numerically manifest the correct 
symptotic diffusion solution, they have not been subjected to a 
igorous asymptotic analysis such as the one we present below for
ur scheme, and thus their ability to produce correct asymptotic 
ehaviour o v er all parameter regimes remains unpro v en (Bolding
t al. 2017 ). Moreo v er, e xtending a DG scheme to adaptiv e mesh
efinement (AMR) would be a substantial challenge, whereas the 
nite volume scheme we propose is fully compatible with existing 
MR frameworks. Finally, McClarren et al. focus e xclusiv ely on

he static diffusion regime, and their scheme is not easily extensible
o either the streaming or dynamic diffusion limits – the former 
ecause the method relies on a specific closure relation that is a poor
pproximation for streaming radiation, and the latter because the 
cheme does not include the velocity-dependent terms that become 
rder unity in the dynamic diffusion limit. Our scheme, by contrast,
pplies to all RHD regimes. 

 A  N E W  ASYMPTOTIC-PRESERVING  

CHEME  F O R  R A D I AT I O N  H Y D RO DY NA M I C S  

e now proceed to describe our new numerical method. We first
escribe our o v erall strate gy for the full RHD system in Section 3.1 ,
hen the IMEX scheme we use for the radiation subsystem in
ection 3.2 , and finally our method for carrying out each IMEX
tage in Section 3.3 . 

.1 Overall time stepping strategy 

e solve the system formed by equation ( 1 ) using an operator split
pproach consisting of two major steps. In the first step, we advance
he hydrodynamic transport subsystem using an explicit method. In 
he second step, we update the radiation transport subsystem and 

atter–radiation coupling terms using a mixed IMEX method. 
The hydrodynamic transport subsystem consists of the partial 

ifferential equations 

∂ 

∂ t 

⎡ 

⎢ ⎣ 

ρ

ρv 

E gas 

⎤ 

⎥ ⎦ 

+ ∇ ·

⎡ 

⎢ ⎣ 

ρv 

ρv ⊗ v + p 

( E gas + p) v 

⎤ 

⎥ ⎦ 

= 0 . (23) 

ur scheme for radiation does not depend on the numerical method
sed to solve this subsystem; for the purposes of our implementation
n QUOKKA ( Paper I ), which we use for all the tests below, we
dopt a semidiscrete approach, discretizing the spatial variables 
n to a grid while initially keeping the time variable continuous,
hereby transforming the partial differential equations into a large 
MNRAS 531, 1228–1242 (2024) 
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4 By conv e x-invariant, we mean that the scheme has the property that if the 
forwards Euler update produces states that are bounded by a conv e x set (e.g. 
the update guarantees that the internal energy remains positive, or that the 
total variation is diminishing) then the full multistage update also remains 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1228/7670616 by guest on 16 June 2025
et of ordinary differential equations (ODEs). These ODEs are then
ntegrated in time utilizing the second-order accurate, strong stability
reserving Runge–Kutta method (RK2-SSP; Shu & Osher 1988 ). For
n in-depth explanation of the method we direct readers to Paper I . 

In this work, our emphasis is on the second major step, the radiation
pdate and matter–radiation coupling. These steps are subcycled with
espect to the hydrodynamic step, since they require smaller time-
teps. 

.2 Implicit–explicit method for the radiation subsystem 

sing the same method of lines approach for the radiation subsystem
nd radiation–matter coupling terms as for hydrodynamics, we define
 ijk as the v olume-a veraged radiation energy density in cell ijk , and
imilarly for all other variables, and express the radiation subsystem
or each cell as 

d 

d t 
U ijk = T ( y ijk , t) + S ( y ijk , t) , (24) 

here, dropping the ijk subscript from this point forward for
onvenience, we define 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

E gas 

E 

1 
c 2 

F 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, T = −∇ ·

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

F 

P 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

G 

cG 0 

−cG 0 

−G 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (25) 

he characteristic time-scales associated with the transport term, T ,
hich consists of the divergence of radiation flux, ∇ · F , and the
ivergence of the radiation pressure tensor ∇ · P , are C 

−1 , which
s potentially fast compared to hydrodynamics, but in the diffusion
egime is much longer than the time-scale ( CL ) −1 associated with the
ource term S . 3 Consequently, we opt to evolve the transport terms
sing an explicit method. This choice is strate gic; the e xplicit update
bviates the need for global communication across the computational
omain. This advantage becomes particularly pronounced on GPUs,
here interdevice communication often represents the primary
ottleneck in performance. In problems where C is so large that
his requires infeasibly many explicit steps, we may elect to solve
he approximate RSLA equations instead (Gnedin & Abel 2001 ;
kinner & Ostriker 2013 ; Wibking & Krumholz 2022 ), for which we

nstead have 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

E gas 

E 

1 
c ̂ c 

F r 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, T = −∇ ·

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 
ˆ c 
c 

F 

P 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

G 

cG 0 

− ˆ c G 0 

−G 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (26) 

here ˆ c is the reduced speed of light, chosen so to be �c but still
uch greater than any hydrodynamic speed. This approximation

educes the size of the transport term from C to ( ̂ c /c) C, and thus
llows larger time-steps. For generality in what follows we will write
ur update scheme using the RSLA equations, but these can be
educed to the exact equations of RHD simply by setting ˆ c = c. 

The short time-scales associated with the matter–radiation cou-
ling terms, S , require an implicit treatment. Notably, as these
erms do not have spatial deri v ati ves, they allo w for the independent
pdate of each cell within the computational domain. Therefore, in
NRAS 531, 1228–1242 (2024) 

 Of course we have shown above that, due to cancellations, these terms in fact 
ind up being of the same order – but our goal is precisely for our numerical 
ethod to be able to reco v er this cancellation. 

w
G
5

w
c

he whole radiation update, there is no non-local implicit update,
f fecti vely eliminating the requirement for additional interdomain
ommunication beyond what is standard in a pure hydrodynamic
pdate. 
To ensure that our choice to operator-split between the source and

ransport terms in this manner does not compromise accuracy, we
tilize the asymptotic-preserving IMEX PD-ARS integrator (Chu
t al. 2019 ), a choice moti v ated by its pro v en conv e x-invariant
roperty 4 and ef fecti veness in preserving the diffusion limit while
aintaining second-order accuracy and stability in the streaming

imit. 5 The IMEX PD-ARS integrator can be characterized by its
ouble Butcher tableau 

 PD −ARS = 

0 0 0 0 

1 1 0 0 

1 1 / 2 1 / 2 0 
1 / 2 1 / 2 0 

0 0 0 0 

1 0 1 0 

1 0 1 / 2 − ε 1 / 2 + ε

0 1 / 2 − ε 1 / 2 + ε, 

(27) 

here ε is a free parameter in the range [0,0.5); in our implementation
e adopt ε = 0. When expressed in equations, the scheme to advance

he system by a time 
 t is 

 

( n + 1 / 2) = U 

( n ) + 
t T ( U 

( n ) ) + 
t S ( U 

( n + 1 / 2) ) (28) 

 

( n + 1) = U 

( n ) + 
t 

[
1 

2 
T ( U 

( n ) ) + 

1 

2 
T ( U 

( n + 1 / 2) ) 

]

+ 
t 

[
1 

2 
S ( U 

( n + 1 / 2) ) + 

1 

2 
S ( U 

( n + 1) ) 

]
, (29) 

here the superscript ( n ) indicates the state at the start of the radiation
pdate (but after the operator-split hydrodynamic update), ( n + 1)
ndicates the state at the end of the radiation update, and ( n + 1/2)
ndicates an intermediate stage. 

One key feature of this update scheme is that the transport and
ource terms appear symmetrically at each of the two stages, so
hat cancellations can be captured properly. A second key feature
s that, on modern architectures where communication is e xpensiv e,
his scheme is only marginally more costly than an update like RK2-
SP, because the only excess work it requires is an extra iterative
olve at the first stage (equation 28 ). Crucially, this extra solve is
urely local, because only the local source terms, rather than the
on-local transport terms, must be iterated. Thus, there is no extra
ommunication in this scheme relative to RK2-SSP. 

.3 Update strategy for IMEX stages 

t each stage of the integrator above, the right-hand side contains
oth explicit terms – those that are e v aluated at state ( n ) during the
rst IMEX stage (equation 28 ) and at states ( n ) or ( n + 1/2) during

he second stage (equation 29 ) and implicit terms that are e v aluated
t state ( n + 1/2) during the first stage and state ( n + 1) during the
econd stage. We therefore begin each stage by e v aluating the explicit
erms. This in turn requires that we e v aluate the transport terms T ,
ithin that bound. For a discussion of why this property is advantageous, see 
ottlieb & Shu ( 1998 ). 
 Formally, Chu et al. ( 2019 ) show that IMEX PD-ARS reduces to RK2-SSP 
hen S is small compared to T , which is the case in the streaming limit. By 

ontrast the scheme has only first order accuracy in the diffusion limit. 
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hich are al w ays explicit in k eeping with our o v erall strate gy. We do
his using a Godunov method. Specifically, we compute the fluxes 
or E and F between cells by using Piecewise Parabolic Method 
PPM) reconstruction to obtain the states at the cell edges and then
sing a Harten, Lax, van Leer (HLL) Riemann solver (Harten, Lax &
an Leer 1983 ) to compute the fluxes from these states. The details
f this step are elaborated in Paper I , and hence we will not repeat
hem here. Ho we ver, we modify the scheme in an important way
ompared to the method presented in Paper I : that scheme, and
ll previous comparable explicit treatments of radiation, have been 
orced to invoke an ad hoc correction to the wavespeeds computed in
he Riemann solver in an attempt to reco v er the diffusion limit. With
ur new time-stepping scheme, no such modification is required, and 
e can simply use the uncorrected HLL fluxes in our update. We
iscuss this issue further in Section 4.3 . 
After carrying out the explicit part of the update, we are left with

he implicit part. For both stages of the IMEX integrator we can
xpress this stage in the generic form 

 

( t+ 1) 
gas − E 

( t) 
gas = cG 

( t+ 1) 
0 θ
t (30) 

 

( t+ 1) − E 

( t) = − ˆ c G 

( t+ 1) 
0 θ
t (31) 

or the energies, and 

 ρv ) ( t+ 1) − ( ρv ) ( t) = G 

( t+ 1) θ
t (32) 

F 

( t+ 1) − F 

( t) = − ˆ c c G 

( t+ 1) θ
t (33) 

or the momenta. Here, terms with superscript ( t ) denote the state
fter applying the explicit terms – for example during the first stage 
equation 28 ) we have E 

( t) = E 

( n ) − 
t( ̂ c /c) ∇ · F 

( n ) – and terms
ith superscript ( t + 1) denote the final state for which we are

ttempting to solve; the factor θ is unity during the first stage and 1/2
uring the second stage. 
In each cell this is a system of eight equations in eight unknowns –

adiation and gas energy, three components of gas velocity, and three 
omponents of radiation flux – that must be solved simultaneously. 

hile we could do so straightforwardly using a single Newton–
aphson iteration scheme or similar, it is more efficient to separate 

he iteration procedure into an inner stage where we solve the energy
quations while freezing v and F , and a second, outer stage where 
pdate the flux and gas velocity and then if necessary go back to the
nner stage and recompute E and E gas using the updated values of v 
nd F . The reason this is more efficient is that it allows the inner
teration stage to consider only two variables rather than eight, and 
n most cases the work terms proportional to v and F are small in the
nergy equations, so E and E gas change little to none as a result of
he update to v and F and the whole procedure converges in a single
r at most a few outer iterations. 
The inner stage consists of updating the energy quantities using 

 modified version of the iteration scheme initially proposed by 
owell & Greenough ( 2003 ) and modified by Paper I . We solve

quation ( 30 ) and equation ( 31 ) for E 

( t+ 1) 
gas and E 

( t + 1) by performing
ewton–Raphson iteration on the non-linear implicit system 

 = F G 

( E 

( t+ 1) 
gas , E 

( t+ 1) ) ≡ E 

( t+ 1) 
gas − E 

( t) 
gas + 

( c 

ˆ c 

)
R 

( t+ 1) , (34) 

 = F R ( E 

( t+ 1) 
gas , E 

( t+ 1) ) ≡ E 

( t+ 1) − E 

( t) − ( R 

( t+ 1) + S ( t+ 1) ) , (35) 
here 

 

( t+ 1) ≡ − ˆ c G 

( t+ 1) 
0 θ
t 

= θ
t 

[
ˆ c 

(
χ0 P 

4 πB 

c 
− χ0 E E 

)(
1 + 

1 

2 

v 2 

c 2 

)

+ (2 χ0 E − χ0 F ) 
ˆ c 

c 

(
v i F i 

c 

)
(36) 

+ ̂  c ( χ0 F − χ0 E ) 

(
v 2 

c 2 
E + 

v i v j P ij 

c 2 

)]
, 

nd S is an optional term to include, for example, the addition of
adiation by stellar sources. Note that E , P , and all the variables that
an depend on E gas – χ0 P , χ0 E , χ0 F , and B – carry the superscripts ( t
 1) which are omitted here for the sake of brevity. By contrast, we

reeze v and F at their values at the start of the inner stage as noted
bo v e; thus these terms do not carry subscripts ( t + 1), and do not
volve during the inner Newton–Raphson stage. 

A single Newton–Raphson iteration consists of solving the lin- 
arized equations 

 · 
 x = −F ( x ) , (37) 

here x is the set of variables to be updated, 
 x is the change in
hese variables during this iteration, F ( x ) is the vector whose zero
e wish to find, and J is the Jacobian matrix of F ( x ). Instead of

aking x = ( E gas , E), as in the original Howell & Greenough ( 2003 )
cheme, we use x = ( E gas , R) as the base variables o v er which to
terate; we find that the system generally converges in fewer iterations 
sing this basis, likely because at high-optical depth the system 

lmost immediately converges to the solution R = 0, and thus the
emaining iterations are ef fecti vely on E gas alone The Jacobian in
his basis is 

∂ F G 

∂ E gas 
= 1 

∂ F G 

∂ R 

= 

c 

ˆ c 
∂ F R 

∂ E gas 
= 

∂ E 

∂ E gas 

∣∣∣∣
R= const. 

= 

1 

C v 

∂ 

∂ T 

(
χ0 P 

χ0 E 

4 πB 

c 

)
∂ F R 

∂ R 

= 

∂ E 

∂ R 

∣∣∣∣
T = const. 

− 1 = − 1 

ˆ c χ0 E θ
t 
− 1 . (38) 

e have omitted the v 2 / c 2 terms and assumed ∂ ( κP /κE ) / ∂ T = 0 in
he calculation of the Jacobian for simplicity, but this simplification 
nly changes the rate of convergence; it does not affect the converged
olution. 

After solving equation ( 37 ) for 
 x , we update x ← x + 
 x ; we
o this repeatedly until the system converges, as determined by the
ondition ∣∣∣∣ F G 

E tot 

∣∣∣∣ < ε and 

∣∣∣∣ c ˆ c F R 

E tot 

∣∣∣∣ < ε (39) 

here 

 tot = E 

( t) 
gas + 

ˆ c 

c 
( E 

( t) 
r + S ( t) ) . (40) 

s the total radiation and material energy at the beginning of the
ime-step accounted for reduced speed of light. We set the relative
olerance ε = 10 −13 by default. Once this Newton–Raphson system 

onv erges, we hav e the updated gas total energy E 

( t+ 1) 
gas and we can

ompute the updated radiation energy as 

 

( t+ 1) = E 

( t) − c 

ˆ c 
( E 

( t+ 1) 
gas − E 

( t) 
gas ) + S ( t+ 1) . (41) 
MNRAS 531, 1228–1242 (2024) 
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6 Note that the total energy in dimensionless units is ˆ E + P 

−1 ˆ E gas rather than 
ˆ E + 

ˆ E gas because in our non-dimensionalization the matter and radiation 
energies are scaled differently – the matter energy is normalized by ρ∞ 

a 2 ∞ 

, 
while the radiation energy is normalized by a r T 4 ∞ 

, and these two differ by a 
factor of P . See Section 2.2 for details. 
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ote that, for ̂  c = c and S = 0, this procedure ensures that our scheme
onserves total energy to machine precision regardless of the level of
ccuracy with which we have iterated the equations to convergence. 

We then proceed to the outer stage of the iteration where we
olve the flux and momentum update equations, equation ( 32 )
nd equation ( 33 ), with the updated gas temperature, opacity, and
adiation energy. To order v/ c , the solution is straightforward: 

 

( t+ 1) 
i = 

F 

( t) 
i + ˆ c θ
t 

[
χ0 P 

4 πB 
c 

v i + χ0 F v j P ji + ( χ0 F −χ0 E ) Ev i 
]

1 + ˆ c χ0 F θ 
t 
. 

(42) 

o order v 2 / c 2 , in cases where χ0 F − χ0 E = 0, the solution is 

 

( t+ 1) 
i = 

F 

( t) 
i + ˆ c θ
t 

(
χ0 P 

4 πB 
c 

v i + χ0 F v j P ji 

)
1 + ˆ c χ0 F (1 + v 2 / 2 c 2 ) θ
t 

. (43) 

hen χ0 F 
= χ0 E and to order v 2 / c 2 , the solution is slightly more
omplex because all three components of F appear in G i . In this
ase, F 

( n + 1) 
i is the solution of a set of three linear equations; these are

traightforward to solve analytically, but the resulting expressions
re somewhat lengthy and so we omit them here for brevity . Lastly ,
ollowing equation ( 32 ), we update the gas momentum via 

 ρv i ) 
( t+ 1) = ( ρv i ) 

( t) − F 

( t+ 1) 
i − F 

( t) 
i 

c ̂  c 
. (44) 

his update also ensures momentum conservation to machine pre-
ision. After we update the gas momentum, we also recalculate the
as’s internal energy (which in QUOKKA we track separately because
e implement a dual energy formalism) by subtracting the updated
inetic energy from the updated total energy. 
As previously indicated, the gas velocity v and radiation flux F 

e use in the inner stage of the iteration are lagged. This can cause
ignificant inaccuracies at high-optical depths when the velocity-
ependent terms are non-negligible. To eliminate errors like this and
ender this scheme fully implicit, we now repeat the inner iteration
sing the updated values of v and F , and compute new estimates for
 and F , repeating this procedure until either the relative change in
he value of the terms proportional to v and F in R (equation 36 ) from
ne outer iteration to the next is below 10 −13 or the absolute change
s below 10 −13 R . Except in the dynamic diffusion limit, where the
elocity-dependent terms are at the same order as all other terms, this
terative process typically terminates after just one iteration, and in
ll the tests we present below, and for all the test problems presented
n Paper I , we never require more than a handful of outer iterations.
hus the cost is modest. This completes accounting for all terms in

he radiation four-force, thus completing radiation–matter coupling. 

 PROPERTIES  O F  T H E  SCHEME  IN  T H E  

IFFUSION  LIMIT  

efore proceeding to numerical tests of the scheme we have de-
cribed, we first present an analysis of its behaviour in the so-called
symptotic diffusion regime, where the photon mean-free path is not
esolved by the computational grid, in order to demonstrate directly
hy it succeeds in capturing this limit while other schemes fail. 

.1 The asymptotic diffusion limit of the discrete IMEX 

quations 

e begin our analysis by recalling the results from Section 2.2 ,
hich are that in the static diffusion limit for grey material with
NRAS 531, 1228–1242 (2024) 
ˆ 0 E = ˆ χ0 F = ˆ χ0 P = 1, to leading order the radiation energy in non-
imensionalized variables is 

ˆ 
 = 

ˆ T 4 (45) 

nd the radiation flux is 

ˆ F = − 1 

3 L 

ˆ ∇ 

ˆ T 4 . (46) 

nserting these limits into the evolution equations for matter and radi-
tion energy that we solve during the radiation update (equation 13 ;
.e. omitting changes in the matter energy due to fluid processes), we
ave 

∂ ̂  E gas 

∂ ̂ t 
= P C 

ˆ G 0 (47) 

∂ ̂  E 

∂ ̂ t 
= 

C 
3 L 

ˆ ∇ 

2 ˆ T 4 − C 

ˆ G 0 , (48) 

nd thus the evolution equation for the total matter plus radiation
nergy reduces to the usual radiation-diffusion form, 6 

∂ 

∂ ̂ t 

(
ˆ E + P 

−1 ˆ E gas 

) = 

C 

3 L 

ˆ ∇ 

2 ˆ T 4 . (49) 

or a numerical method for thermal radiative transfer to be ‘asymp-
otic preserving’, it must give a valid discretization of equation ( 49 )
nd enforce the conditions in equation ( 45 ) and equation ( 46 ) when
 � L � 1. With an asymptotic preserving method, it is possible

o use cells that are optically thick and still obtain accurate solutions
f radiative transfer. 
To verify that our IMEX scheme satisfies this condition, we

egin by writing down the two steps of the IMEX update for the
adiation energy (equation 28 and equation 29 ), again using non-
imensionalized variables and assuming grey material. For simplicity
e will adopt ˆ v = 0 and ˆ c = c as well. This gives 

ˆ E 

( n + 1 / 2) − ˆ E 

( n ) 


 ̂

 t 
= − ˆ ∇ · ( C ̂

 F 

( n ) 
) 

−L C 

[
ˆ E 

( n + 1 / 2) − ( ̂  T ( n + 1 / 2) ) 4 
]
, (50) 

ollowed by 

ˆ E 

( n + 1) − ˆ E 

( n ) 


 ̂

 t 

= −1 

2 

[ 
ˆ ∇ · ( C ̂

 F 

( n ) 
) + 

ˆ ∇ · ( C ̂

 F 

( n + 1 / 2) 
) 
] 

− 1 

2 
L C 

[
ˆ E 

( n + 1 / 2) − ( ̂  T ( n + 1 / 2) ) 4 + 

ˆ E 

( n + 1) − ( ̂  T ( n ) ) 4 
]
, (51) 

rom equation ( 50 ) we can solve for E 

( n + 1/2) and expand to first
rder in L 

−1 to obtain 

ˆ 
 

( n + 1 / 2) = ( ̂  T ( n + 1 / 2) ) 4 + L 

−1 
[ 
( C
 ̂

 t ) −1 ˆ E 

( n ) − ˆ ∇ · ˆ F 

( n ) 
] 
. (52) 

hus in limit C � L � 1, we have ˆ E 

( n + 1 / 2) = ( ̂  T ( n + 1 / 2) ) 4 . Similarly,
erforming the same operation on equation ( 51 ), one can show to
eading order in L 

−1 that 

ˆ 
 

( n + 1) = ( T ( n + 1) ) 4 . (53) 

e have therefore established our scheme enforces equation ( 45 ) at
oth stages of the IMEX update. 
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We next examine the two IMEX stages for the radiation flux, 7 

ˆ F 

( n + 1 / 2) − ˆ F 

( n ) 


 ̂

 t 
= − ˆ ∇ 

(
CE 

( n ) 

3 

)
− L C ̂

 F 

( n + 1 / 2) 
(54) 

ˆ F 

( n + 1) − ˆ F 

( n ) 


 ̂

 t 
= 

1 

2 

[ 

ˆ ∇ 

( 

C 

ˆ E 

( n ) 

3 

) 

+ 

ˆ ∇ 

( 

C 

ˆ E 

( n + 1 / 2) 

3 

) ] 

− 1 

2 
L C( ̂  F 

( n + 1 / 2) + 

ˆ F 

( n + 1) 
) . (55) 

quation ( 54 ) implies 

F 

( n + 1 / 2) = − 1 

1 + L C
 ̂

 t 

(
C
 ̂

 t 

3 
ˆ ∇ 

ˆ E 

( n ) − F 

( n ) 

)
(56) 

nd if we again take the limit C � L � 1, to leading order we have 

ˆ F 

( n + 1 / 2) = − 1 

3 L 

ˆ ∇ 

ˆ E 

( n ) = − 1 

3 L 

ˆ ∇ ( ̂  T ( n ) ) 4 . (57) 

pplying the same procedure to equation ( 55 ) yields leading-order 
erms 

ˆ F 

( n + 1) = − 1 

3 L 

ˆ ∇ 

ˆ E 

( n + 1 / 2) = − 1 

3 L 

ˆ ∇ ( ̂  T ( n + 1 / 2) ) 4 . (58) 

hus the leading term of the radiation flux reduces the form given
y equation ( 46 ), simply lagged by a half-step. This none the less
eans that our scheme obeys this constraint. 
Finally, we write down the two IMEX stages for the matter energy

pdate 

 

−1 
ˆ E 

( n + 1 / 2) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 
= L C 

[
ˆ E 

( n + 1 / 2) − ( ̂  T ( n + 1 / 2) ) 4 
]
, (59) 

 

−1 
ˆ E 

( n + 1) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 
= 

1 

2 
L C 

[
ˆ E 

( n + 1 / 2) − ( ̂  T ( n + 1 / 2) ) 4 

+ E 

( n + 1) − ( T ( n ) ) 4 
]
, (60) 

dding equation ( 50 ) to equation ( 59 ) and using equation ( 58 ) we
et 

ˆ E 

( n + 1 / 2) − ˆ E 

( n ) 


 ̂

 t 
+ P 

−1 
ˆ E 

( n + 1 / 2) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 

= − ˆ ∇ · ( C ̂

 F 

( n ) 
) 

= 

C 

3 L 

ˆ ∇ 

2 ( ̂  T ( n −1 / 2) ) 4 , (61) 

here the superscript ( n − 1/2) indicates the intermediate state of the
revious time-step. Similarly, adding equation ( 51 ) to equation ( 60 )
nd using equation ( 57 ) and equation ( 58 ) gives 

ˆ E 

( n + 1) − ˆ E 

( n ) 


 ̂

 t 
+ P 

−1 
ˆ E 

( n + 1) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 

= −1 

2 

(
ˆ ∇ · ( C ̂

 F 

( n ) 
) + 

ˆ ∇ · ( C ̂

 F 

( n + 1 / 2) 
) 
)

= 

C 

3 L 

(
1 

2 

)[
ˆ ∇ 

2 ( ̂  T ( n −1 / 2) ) 4 + 

ˆ ∇ 

2 ( ̂  T ( n ) ) 4 
]
. (62) 

he combination of equation ( 61 ) and equation ( 62 ) represents a
alid discretization of the diffusion equation ( 49 ), albeit one using
 temperature that is lagged by half a step, thus proving our IMEX
D-ARS scheme preserves the asymptotic diffusion limit. 
It is worth noting that schemes such as the one described by equa-

ion ( 61 ) and equation ( 62 ), while they represent valid discretizations
 Note that in writing down these equations we assume that our closure for 
he pressure tensor will produce P → (1 / 3) I E in optically thick conditions, 
hich is true of any reasonable closure scheme. 

F  

n  
f the diffusion equation, can be unstable depending on how the
patial deri v ati ves are e v aluated. In particular, Radice et al. ( 2018 )
oint out that, in a scheme where computation of ˆ F in the diffusion
imit ef fecti vely reduces to computing a centred difference on ˆ E , and
n turn e v aluating ˆ ∇ · ˆ F in the equations abo v e reduces to e v aluating
 centred difference on ˆ F , the resulting scheme has the property that
he solutions in even- and odd-numbered cells are decoupled, i.e. the
olution in cell i depends only on the states in cells i − 2 and i +
, not i − 1 and i + 1; this in turn can give rise to an even–odd
nstability where numerical oscillations with a period of two cells 
re not damped and can grow large. Radice et al. propose a method
o suppress this instability. In our tests, while we observe faint hints
f the instability in our scheme, these appear only in the dynamic
iffusion regime and only in tests at very low resolution (e.g. < 64
ells per linear dimension). In all other problems the instability, if it
xists at all, is imperceptibly small. We therefore do not use Radice
t al.’s correction for any of the tests we present belo w. Ho we ver,
e have implemented it in QUOKKA , and allow users to enable it via
 compile-time option should it pro v e useful at some point in the
uture. 

.2 Comparison to schemes with purely explicit intermediate 
tages 

t is instructive at this point to repeat the analysis we have just per-
ormed for the IMEX discretization for the RK2-SSP discretization 
sed in Paper I , since this will let us see why this scheme does
ot successfully capture the asymptotic diffusion regime. While our 
nalysis will be specific to this particular time stepping approach, we
ill see that the results generalize straightforwardly to any scheme 
here the intermediate stage is fully explicit and includes only the

ransport terms, and thus to other schemes such as those proposed by
osdahl & Teyssier ( 2015 ) and Skinner et al. ( 2019 ). 
The RK2-SSP scheme uses the time update 

 

( n + 1 / 2) = U 

( n ) + 
t T ( U 

( n ) ) (63) 

 

( n + 1) = U 

( n ) + 
t 

[
1 

2 
T ( U 

( n ) ) + 

1 

2 
T ( U 

( n + 1 / 2) ) 

]
+ 
t S ( U 

( n + 1) ) (64) 

ompared to equation ( 28 ) and equation ( 29 ), the primary difference
s in the treatment of the source terms S ; in the IMEX scheme these
ppear at both stages of the update, while in the RK2-SSP scheme
hey appear only at the final stage. This will prove to be crucial in
hat follows. 
Again adopting the limit C � L � 1 and setting P = (1 / 3) I E, as

ppropriate for static diffusion, we can write down the leading-order 
erms in the two stages of this update for the radiation energy as 

ˆ 
 

( n + 1 / 2) = 

ˆ E 

( n ) − C
 ̂

 t ̂  ∇ · ˆ F 

( n ) 
(65) 

ˆ 
 

( n + 1) = ( ̂  T ( n + 1) ) 4 . (66) 

or the radiation flux, we obtain 

ˆ F 

( n + 1 / 2) = 

ˆ F 

( n ) − C
 ̂

 t 

3 
ˆ ∇ 

ˆ E 

( n ) , (67) 

ˆ F 

( n + 1) = − 1 

3 L 

(
1 

2 

)(
ˆ ∇ 

ˆ E 

( n ) + 

ˆ ∇ 

ˆ E 

( n + 1 / 2) 
)
. (68) 

inally, if we write down the update for the gas energy (which is
on-trivial only for the second stage, since T = 0 for the gas energy)
MNRAS 531, 1228–1242 (2024) 
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nd add it to that for the radiation energy, 

ˆ E 

( n + 1) − ˆ E 

( n ) 


 ̂

 t 
+ P 

−1 
ˆ E 

( n + 1) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 

− C 

2 

(
ˆ ∇ · ˆ F 

( n ) + 

ˆ ∇ · ˆ F 

( n + 1 / 2) 
)

. (69) 

ubstituting equation ( 67 ) and equation ( 68 ) into equation ( 69 ), we
btain 

ˆ E 

( n + 1) − ˆ E 

( n ) 


 ̂

 t 
+ P 

−1 
ˆ E 

( n + 1) 
gas − ˆ E 

( n ) 
gas 


 ̂

 t 

= 

1 

2 

[(
1 

2 

)
C 

3 L 

( ̂  ∇ 

2 ˆ E 

( n ) + 

ˆ ∇ 

2 ˆ E 

( n −1 / 2) ) + 

C 

2 
 ̂

 t 

3 
ˆ ∇ 

2 ˆ E 

( n ) 

]
. (70) 

hus we see that there are two modes of radiation diffusion in
his numerical scheme: one is physical diffusion with a diffusion
oefficient of C/ 3 L , and the other is numerical diffusion with a
oefficient of C 

2 
 ̂

 t / 3. This numerical mode will dominate for any
ime-step 
 ̂

 t � 1 /CL , or, in dimensional terms, 
 t > λ∞ 

/ c , i.e.
henever the time-step is large enough that we do not resolve the

ight-crossing time of a photon mean-free path. In the asymptotic
iffusion regime, where the photon mean-free path is smaller than
he size of a cell, this means that numerical diffusion dominates any
ime that the time-step is larger than the light crossing time of a cell.
n practice, the time-step is al w ays much larger than this – since
therwise one might as well use a fully explicit scheme – which
xplains why discretizations such as RK2-SSP fail in the asymptotic
iffusion regime. 
Comparing equation ( 70 ) to equation ( 62 ), we see that the

umerical diffusion mode is remo v ed in the IMEX discretization, and
y comparing the calculations leading up to these equations we can
lso understand why. The numerical diffusion term in the RK2-SSP
pdate originates in a term that appears at the intermediate stage of
he flux update (equation 67 ). This term does not appear to leading
rder in the intermediate stage of the IMEX update (equation 57 )
ecause it is o v erwhelmed by the source term, which is a factor
f L larger; it is a cancellation within the source term that forces
he radiation flux to the correct value for diffusion. Thus the IMEX
pdate winds up with an estimate for the intermediate-state flux that
s of order 1 /L independent of the time-step, while the RK2-SSP
pdate, because it ignores the order CL source term but retains the
rder C transport term during the intermediate stage, obtains a flux
stimate that is of order C
 ̂

 t instead. This o v erestimate is what gives
ise to the artificial numerical diffusion of energy. 

An important conclusion to draw from this argument is that the
ailing in the RK2-SSP scheme for this problem is not specific to that
cheme, but is instead generic to any update scheme that contains
 stage that includes only the transport terms and not the source
erms, or where the source terms are operator-split from the transport
erms (e.g. Jiang et al. 2014 ; Skinner et al. 2019 ). Such a scheme
ill al w ays o v erestimate the transport in diffusion-re gime problems
here the source term is responsible for suppressing them. 

.3 On modifications to the radiation wave speed 

he problem we have identified in the RK2-SSP scheme is not
ew; indeed, multiple authors have pointed out that the HLL solver
pplied to the radiation subsystem, in a scheme where the source and
ransport terms are operator-split, yields fluxes that fail to preserve
he asymptotic diffusion limit (Lowrie & Morel 2001 ; Audit et al.
002 ; Jiang et al. 2013 ; Skinner et al. 2019 ; Wibking & Krumholz
022 ). In an attempt to circumvent this problem, these authors have
NRAS 531, 1228–1242 (2024) 
roposed a range of corrections to the energy fluxes; for instance,
kinner et al. ( 2019 ) suggest 

 

HLL 
E, corrected = 

S R F L − S L F R + εS R S L ( E R − E L ) 

S R − S L 
, (71) 

here S L,R are the characteristic left and right wavespeeds, respec-
i vely, whose v alues absent the RSLA are gi ven by S = ±√ 

f c,
here f is the component of the Eddington tensor along that direction.

n this expression, ε is an empirical correction factor that smoothly
ransitions from 1 in the streaming limit to 1/ τ in the optically thick
imit, where τ is an estimate of the optical depth, usually computed as
he optical depth across N computational cells. The value of N must
e determined empirically by testing the code, and is not the same
or all codes or numerical schemes: for example Skinner et al. ( 2019 )
se N = 1, while Jiang et al. ( 2013 ) use N = 

√ 

10 . This correction
mplies an ef fecti v e wav e speed of 

 eff = c 

√ 

f 

τ
, (72) 

n light of the preceding discussion, we can see that this reduction
n the flux is ef fecti vely a correction that attempts to reduce the
umerical diffusion mode in equation ( 70 ), by in turn forcing the
 v erestimated intermediate time–flux (equation 67 ) back toward
he solution that would have been obtained by retaining rather
han dropping the source term. Ho we v er, the accurac y of this fix,
articularly in the regime of intermediate optical depth, is not known.
In our IMEX PD-ARS method, we use the wavespeed S without

ny correction in the Riemann solver. No correction is necessary
ecause, by retaining the source term, we automatically reco v er the
orrect flux in the diffusion limit (equation 57 ), and our scheme
orrectly and smoothly goes between the optically thin limit, where
he transport term dominates, and the optically thick limit, where the
ource term does. Indeed, a corollary of this analysis is that, in the
ighly optically thick regime where the source term is dominant, we
eed not even obey the Courant–Friedrichs–Lewy (CFL) condition
or the radiation in order to obtain the correct answer. To understand
hy this is the case, we notice that equation ( 62 ) is an ef fecti ve

emporal discretization of the diffusion equation 

∂ 

∂ ̂ t 
ˆ E = 

C 

3 L 

ˆ ∇ 

2 ˆ T 4 , (73) 

hich has a diffusion coefficient of ˆ D diff = C/ (3 L ). The effective
peed of the diffusion in time interval ˆ t is approximately 

ˆ 
 diff ≈

√ 

ˆ D diff ̂  t 

ˆ t 
= 

√ 

C 

3 L ̂

 t 
. (74) 

o better understand the magnitude of ˆ S diff , we reintroduce dimen-
ions to the variables and get 

 diff = 

√ 

c 

3 tχ0 
= 

c √ 

3 

1 √ 

CFL τcell 
, (75) 

here CFL ≡ ct / 
 x is the radiation CFL number. This e v aluation
f diffusion speed aligns with the wave speed correction ‘hack’
equation 72 ) when CFL = 1. Our IMEX scheme’s asymptotic
reserving nature, as demonstrated, allows the CFL number to
xceed 1 while still accurately capturing the diffusion limit. This is
 x emplified in the subsequent discussion on the asymptotic Marshak
ave test (Section 5.3 ), where our numeric scheme accurately

atches the position of the diffusion front for radiation CFL numbers
p to ∼10. This observation is in concordance with Jiang et al.
 2013 ), who, through a linear analysis of the diffusion equations,
howed that if one calculates the effective propagation speed with
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Figure 1. Relative L1 error as a function of CFL number for three different 
spatial resolutions N x = 1024, 4096, and 8192, as indicated in the legend, for 
the optically thin radiation-driven wind test. Dashed lines show slopes of 1 
and 2 to guide the e ye. F or sufficiently large spatial resolution the convergence 
rate approaches quadratic as expected from the second-order scaling of our 
time-integration scheme in the streaming limit. 
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 wavelength of 10 cells, the numerical diffusion is small enough 
ot to affect the solution. This compatibility with the findings from
inear wave analysis of diffusion equations not only validates our 
cheme’s robustness in limiting numerical diffusion effectively but 
lso underscores the versatility of the IMEX PD-ARS scheme in 
ccommodating higher CFL numbers without compromising the 
symptotic preserving property. 

 N U M E R I C A L  TESTS  

he original QUOKKA paper ( Paper I ) introduced a series of tests
o validate the accuracy and convergence capabilities of QUOKKA , 
ncluding tests of the hydrodynamic subsystem, the radiation trans- 
ort, and coupled RHD. This new scheme passes all these tests, so
e will not repeat them here, with the exception of one test that
e repeat to demonstrate the convergence properties of our scheme. 
e instead introduce additional tests for our implementation of the 

MEX PD-ARS scheme in QUOKKA that are specifically designed to 
est the code’s ability to preserve the asymptotic diffusion limit. All 
hese tests use the Levermore ( 1984 ) closure for the RHD system

see Paper I for full details of the implementation. The full source
ode and outputs for all tests are available in the QUOKKA github
epository (see Data Availability statement for details). 

.1 Conv er gence rate test 

e demonstrate the convergence rate of our RHD solver through the 
ptically thin radiation-driven wind test introduced by Paper I ; in 
his test a radiation field passes through and accelerates an optically 
hin gas. We setup this test as described in Section 3.3.2 of Paper I ,
ith the exception that the spatial resolution varies from N x = 1024

o 8192 grid cells and the CFL number varies from 0.1 to 0.6; we
se much higher spatial resolution than in the original test in order to
each a limit where the temporal rather than the spatial discretization 
ominates the error, and we choose an optically thin problem because 
e only expect second-order temporal convergence in the streaming 

imit. 
We show the error of our numerical solution relative to the exact

olution (again computed exactly as in Paper I ) in Fig. 1 . At fixed
 x , the relative error decreases with decreasing CFL number, or
qui v alently, time-step size. As the accuracy of the numerical solution 
epends on both spatial and temporal resolutions, we expect that the 
onvergence rate with respect to the CFL number to steepen as spatial
esolution increases. This is confirmed in the figure. At N x = 8192, the
ower-law slope of the error-CFL number scaling relation converges 
owards the value of 2 expected for the second-order accuracy of our
ime-integration scheme in the streaming limit. This confirms that 
ur implementation achieves the theoretically expected convergence 
ate. 

.2 Non-equilibrium radiation shock 

e begin our tests in the diffusion regime with the classical grey non-
quilibrium radiative shock test described by Zel’dovich & Raizer 
 2012 ). Radiation can modify the structure of a shock because it
iffuses and interacts with matter. Lowrie & Edwards ( 2008 ) have
ound a semi-analytic exact solution of radiative shocks with grey 
on-equilibrium diffusion. Using their parameters with an upstream 

ach number of M = 3, we obtain a subcritical radiation shock 
hose temperature jumps discontinuously at the shock interface. We 
resent our numerical calculation of this problem and compare them 

o the solutions of Lowrie & Edwards ( 2008 ). Following the setup
sed by Skinner et al. ( 2019 ), we scale from dimensionless to cgs
nits by setting the opacities to κ = 577 cm 

2 g −1 and mean molecular
eight to μ = m H . We use an adiabatic equation of state with an

diabatic index to γ = 5/3. The shock is simulated in a 1D region
ith x ∈ [0, 0.015 75] cm resolved with 512 grids. The problem

s set in the rest frame of the shock initialized at x = 0, and the
onditions on the left and right sides of the shock are uniform, with
ensities, temperatures, and velocities given by ρL = 5.69 g cm 

−3 ,
 L = 2.18 × 10 6 K, v L = 5.19 × 10 7 cm s −1 , and ρR = 17.1 g cm 

−3 ,
 R = 7.98 × 10 6 K, v R = 1.73 × 10 7 cm s −1 , respectively. In order

o exactly match the assumptions used in the semi-analytic solution, 
e use the Eddington approximation, P = (1 / 3) EI , to calculate the

adiation pressure tensor. Following Skinner et al. ( 2019 ), we use a
educed speed of light ˆ c = 10( v L + c s , L ), where c s,L is the adiabatic
ound speed of the left-side state. We use a CFL number of 0.4 and
volve until t = 10 −9 s. We show the resulting temperature profile
n Fig. 2 . The agreement between our numerical calculation and
he semi-analytic solution is excellent. The L 1 norm of the relative
rror of the gas temperature is 0.38 per cent, which is as good as the
olution of Skinner et al. ( 2019 ). 

.3 The asymptotic Marshak-wave problem 

e test the code’s ability to accurately capture radiation in the
ptically thick limit via the dif fusi v e Marshak-wav e problem. This
roblem consists of a semi-infinite medium of material with a 
ariable absorption coefficient χ = 300 cm 

−1 /( k B T /keV) 3 . We input
ncoming isotropic radiation on the boundary at x = 0 from a 1 keV
emperature source. We use an initial condition of T ( x ) = T 0 =
0 −3 keV and E( x) = a r T 

4 
0 for our test problem. 

Fig. 3 shows our numerical results compared to the semi- 
nalytic solution for the dif fusi v e Marshak-wav e problem, alongside
 comparison to the solution using the SSP-RK2 scheme. The 
umerical calculation uses a spatial grid of 60 cells across the
omain (0, 0.66 cm), with each cell spanning 3 × 10 9 mean-free
aths at the minimum temperature and three mean-free paths at the
MNRAS 531, 1228–1242 (2024) 
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M

Figure 2. Comparing radiation and gas temperature from the numerical 
calculation (solid lines) with the exact steady-state solution (dots) in a 
subscritical radiation shock with M = 3. 

h  

3  

a  

(  

s  

0  

a  

s

5

I  

a  

r  

t

 

a  

v  

a  

p  

w  

p  

g
 

i  

t  

t  

i  

i  

3  

d  

o  

5  

p  

l  

d  

i  

r  

F
s
r
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1
ighest temperature. The heat capacity in this problem is constant at
 × 10 15 erg cm 

−3 keV 

−1 . We compare this solution with the semi-
nalytic equilibrium-diffusion solution from Zel’dovich & Raizer
 2002 ). We find a relative L1-norm error at about 4 . 5 per cent . The
imulation results presented here are obtained using a CFL number of
.9, but the simulation runs with a CFL number up to ∼10, implying
 time–step roughly 10 times the largest permissible time-step in the
treaming limit. 
NRAS 531, 1228–1242 (2024) 

igure 3. Comparing numerical solutions to the Marshak-wave problem in the asy
cheme we introduce here (right). The solid lines are the semi-analytic solutions a
un with 
 x = 0.011 cm and CFL = 0.9. The IMEX scheme accurately captures the
ropagates about two times too fast. 
.4 Advecting radiation pulse in the static diffusion limit 

n this test, introduced by Krumholz et al. ( 2007 ), we simulate the
dvection of a radiation pulse by the gas motion in the diffusion
egime. We set the initial gas and radiation temperatures equal in this
est, and the initial temperature and density profiles are 

T = T 0 + ( T 1 − T 0 ) exp 

(
− x 2 

2 w 

2 

)
, 

ρ = ρ0 
T 0 

T 
+ 

a R μ

3 k B 

(
T 4 0 

T 
− T 3 

)
, 

with T 0 = 10 7 K, T 1 = 2 × 10 7 K, ρ0 = 1.2 g cm 

−3 , w = 24 cm,
nd μ = 2.33 m p = 3.9 × 10 −24 g. The radiation pressure is estimated
ia the Eddington approximation. The opacity of the gas is set
t κ0 P = κ0 E = κ0 F = 100 cm 

2 g −1 . The system is initially in
ressure balance. If there were no radiation diffusion, the system
ould be in an equilibrium between the gas pressure and radiation
ressure. Because of radiation diffusion, the balance is lost and the
as mo v es. 

We solve the problem numerically in two different frames, one
n the lab frame and the other in the comoving frame, and compare
he results in Fig. 4 . In the comoving frame run, the velocity is 0 in
he beginning everywhere. In the lab frame run, the initial velocity
s v 0 = 10 6 cm s −1 . In both runs, the optical depth across the pulse
s τ = ρκw = 2.9 × 10 3 , and in the lab-frame run β ≡ v 0 / c =
.3 × 10 −5 , giving βτ ≈ 0.1 and placing this problem in the static
iffusion limit. The computational domain in both runs is a 1D region
f ( −512, 512 cm) with periodic boundaries, and the grid consists of
12 uniform cells. We show the density, temperature, and velocity
rofiles from both runs at t = 4.8 × 10 −5 s in Fig. 4 . The results of the
ab-frame run have been shifted in space by v 0 t for comparison. The
ensity, temperature, and velocity profiles from both runs are almost
dentical, demonstrating the accuracy of our scheme in capturing
adiation advection. We also show the relative difference from both
mptotic diffusion limit from the SSP-RK2 scheme (left) and IMEX PD-ARS 
nd the dots are the nodal values of the numerical solution. Both simulations 
 diffusion of radiation while in the SSP-RK2 scheme solution, the wavefront 

228/7670616 by guest on 16 June 2025
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Figure 4. Advecting radiation pulse tests in the static diffusion regime at t = 4.8 × 10 −5 s using the RK2-SSP scheme (left) versus our newly introduced IMEX 

scheme (right). The IMEX scheme accurately captures the radiation diffusion, agreeing well with the results presented in Krumholz et al. ( 2007 ) and Zhang 
et al. ( 2011 ). 
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uns in Fig. 5 . The relative difference between the non-advecting 
nd advecting cases is below 0 . 03 per cent anywhere. The relative 
ifference between the temperature of the gas and radiation is below 

 × 10 −9 . We compare these results with that of Krumholz et al.
 2007 ) and Zhang et al. ( 2011 ) and find good agreement. 

.5 Advecting radiation pulse in the dynamic diffusion limit 

n this test, we rerun the advecting radiation pulse problem in 
he dynamic diffusion regime. Compared to the static diffusion 
ase, the advection speed is increased to 3 × 10 7 cm s −1 and the
pacity is increased to 500 cm 

2 g −1 . Numerically, β = 10 −3 , τ =
.4 × 10 4 , and βτ = 14, placing this problem in the dynamic
iffusion limit. We increase the number of cells to 1024 to reduce
he magnitude of odd–even decoupling instability, and evolve the 
imulation to t = 4.8 × 10 −5 s. The relati ve dif ference between
he non-advecting and advecting cases is below 0.06 per cent 
nywhere (Fig. 6 ), demonstrating the excellent accuracy of our 
cheme in capturing radiation advection in the dynamic diffusion 
egime. Although there is no analytic solution to this problem, 
e can estimate the expected pulse width via the diffusion equa- 

ion 

∂ 

∂ t 
E = 

c 

3 χ

∂ 2 

∂ x 2 
E, (76) 
he expected distance that the pulse has diffused at time t is
pproximately 

 ≈
√ 

ct 

3 χ
= 28 . 3 cm , (77) 

he temperature profile of our numerical calculation Fig. 6 agrees 
ell with this analytic estimation. 

.6 Advecting uniform medium in the dynamic diffusion regime 

e test the code’s ability to incorporate relativistic corrections up 
o order v/ c or order v 2 / c 2 with a 1D test problem of advecting a
niform medium in the dynamic diffusion regime. In this test, the
as is initially moving at a uniform velocity of v 0 = 0.01 c and has
 uniform density. We configure the opacity and grid size such that
ach grid’s optical depth is 10 5 . The radiation is initially in thermal
quilibrium with the medium at the comoving frame. 

In the lab frame, to order v/ c the initial radiation quantities are 

( t = 0) = E 0 , (78) 

 ( t = 0) = 

4 

3 
v 0 E 0 , (79) 

nd we can show that the space-like component of the radiation
our-force, equation ( 4 ), to order v/ c vanishes: 
MNRAS 531, 1228–1242 (2024) 
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Figure 5. Top: relative errors in density (dashed lines) and temperature (solid 
lines) between the advected and unadvected runs. Bottom: relative difference 
between gas and radiation temperature in the advected run. 

Figure 6. Advecting radiation pulse test in the dynamic diffusion regime, 
where β ≡ v/ c = 10 −3 and the optical depth across the pulse is τ = 10 4 , 
yielding βτ = 10. The initial condition is plotted as grey dotted lines. 
The observed radiation diffusion closely matches the theoretical predictions 
derived from the diffusion equation. The difference between the advected and 
non-advected pulse is so small that it is nearly invisible to the eye. 
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− G 1 = −χ0 
F 

c 
+ χ0 

4 πB 

c 

v 

c 
+ χ0 

v j P j1 

c 
(80) 

= −χ0 
4 

3 
E 0 

v 0 

c 
+ χ0 E 0 

v 0 

c 
+ χ0 

1 

3 
E 0 

v 

c 
(81) 

= 0 (82) 

To order v 2 / c 2 the initial radiation quantities are 

( t = 0) = E 0 

(
1 + 

4 

3 

v 2 

c 2 

)
, (83) 

 ( t = 0) = 

4 

3 
v 0 E 0 , (84) 

nd we can show that both the time-like and space-like component
f the radiation four-force vanishes: 

− cG 0 = c χ0 

(
4 πB 

c 
− E 

)(
1 + 

1 

2 

v 2 

c 2 

)
+ χ0 

v i F i 

c 

= cχ0 

[
E 0 − E 0 (1 + 

4 

3 

v 2 

c 2 
) 

](
1 + 

1 

2 

v 2 

c 2 

)
+ χ0 

v 0 

c 

4 

3 
v 0 E 0 

= O 

(
v 4 

c 4 

)
(85) 

− G 1 = −χ0 F 
F 

c 

(
1 + 

1 

2 

v 2 

c 2 

)
+ χ0 P 

4 πB 

c 

v 

c 
+ χ0 F 

v j P j1 

c 

= −χ0 F 
4 

3 
E 0 

v 0 

c 

(
1 + 

1 

2 

v 2 0 

c 2 

)
+ χ0 P E 0 

v 0 

c 

+ χ0 F 
v 0 

c 

1 

3 
E 0 (1 + 

4 

3 

v 2 0 

c 2 
) 

= O 

(
v 3 

c 3 

)
(86) 

The key feature of this test is that, in the lab frame, the radiation
nergy is out of equilibrium with the thermal radiation. Ho we ver,
his excess is offset by the work done to the radiation by the matter.
ne can show that our backwards Euler scheme, equation ( 42 ) and

quation ( 43 ), preserves this equilibrium, leading to an equilibrium
tate ( E 

( n + 1) = E 

( n ) and F 

( n + 1) = F 

( n ) ) that aligns precisely with
he expected outcomes of this test (Fig. 7 ), achieving precision up
o machine accuracy even in the dynamic diffusion limit (Table 1 ).
onversely, the source term from Howell & Greenough ( 2003 ) and
aper I , defined as ∝ (4 πB / c − E r ), fails to attain this balance. 

 C O N C L U S I O N  

e have presented a novel mixed IMEX time integration scheme for
nite-volume RHD that is second-order accurate in the streaming

imit and accurately preserves the asymptotic diffusion limit. Our
ethod uniquely combines the robustness of local implicit methods

n handling stiff source terms with the scalability and simplicity
f explicit methods for adv ectiv e transport, making it particularly
uitable for adaptive mesh refinement and massively parallel, GPU-
ccelerated architectures. This scheme addresses a critical gap
n current RHD solvers by ensuring asymptotic accuracy in the
treaming, static diffusion, and dynamic diffusion limits, including
n the asymptotic diffusion regime where the photon mean-free path
s much smaller than the computational grid, without necessitating
on-local implicit steps or ad hoc adjustments to the radiation flux
ased on the optical depth. We have implemented our algorithm in
he GPU-accelerated AMR RHD code QUOKKA ( Paper I ). QUOKKA

s open-source and a link to download the source code is in the DATA
 V AILABILITY section. 
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Figure 7. Advecting uniform medium test in the dynamic diffusion limit 
( β = 0.01, βτ = 10 3 ). The numerical results match the analytic solution to 
the limits of machine precision. 

Table 1. Relative errors of the matter temperature in numerical 
calculation with respect to theoretical solution in the advecting 
uniform medium tests. Col. 3: the v/ c order used in the source 
terms. 

β βτ Order Error 

10 −4 1 1 < 10 −15 

10 −2 10 3 1 4 × 10 −5 

10 −2 10 3 2 < 10 −15 
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We hav e v erified our algorithm using a variety of established
uantitative tests, including the non-equilibrium radiation shock 
est, the asymptotic Marshak wave test, and the advecting radiation 
ulse test in the static and dynamic diffusion limit. These tests
emonstrate the scheme’s capability to reco v er the correct asymptotic 
imits. 

Looking forward, we envision several areas for further devel- 
pment. First, extending our scheme to include more complex 
adiation transport models, such as multifrequency radiation trans- 
er and non-thermal emission, could expand its applicability to a 
roader range of astrophysical problems. In addition, integrating 
ur RHD method with other physics modules, such as magnetic 
elds, could also open new channels for multiphysics simulations 

n astrophysics. Finally, although conv e x-invariant IMEX meth- 
ds that achieve second- or higher-order accuracy in the diffu- 
ion regime b ut ha ve time-steps restricted solely by the trans-
ort terms do not exist (see Gottlieb, Shu & Tadmor 2001 ; Chu
t al. 2019 ), it is possible to generalize our scheme to achieve
igher order accuracy in the streaming limit by including addi- 
ional RK stages. We will also investigate this possibility in future 
ork. 
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